Core Mathematics C1 Paper K

1. Express $\sqrt{50}+3 \sqrt{8}$ in the form $k \sqrt{2}$.
2. Find the coordinates of the stationary point of the curve with equation

$$
\begin{equation*}
y=x+\frac{4}{x^{2}} . \tag{5}
\end{equation*}
$$

3.

The diagram shows the curve with equation $y=x^{3}+a x^{2}+b x+c$, where a, b and c are constants. The curve crosses the x-axis at the point $(-1,0)$ and touches the x-axis at the point $(3,0)$.

Show that $a=-5$ and find the values of b and c.
4. The curve C has the equation $y=(x-a)^{2}$ where a is a constant.

Given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-6
$$

(i) find the value of a,
(ii) describe fully a single transformation that would map C onto the graph of $y=x^{2}$.
5. The straight line l_{1} has the equation $3 x-y=0$.

The straight line l_{2} has the equation $x+2 y-4=0$.
(i) Sketch l_{1} and l_{2} on the same diagram, showing the coordinates of any points where each line meets the coordinate axes.
(ii) Find, as exact fractions, the coordinates of the point where l_{1} and l_{2} intersect.
6. (a) Given that $y=2^{x}$, find expressions in terms of y for
(i) 2^{x+2},
(ii) 2^{3-x}.
(b) Show that using the substitution $y=2^{x}$, the equation

$$
2^{x+2}+2^{3-x}=33
$$

can be rewritten as

$$
\begin{equation*}
4 y^{2}-33 y+8=0 \tag{2}
\end{equation*}
$$

(c) Hence solve the equation

$$
\begin{equation*}
2^{x+2}+2^{3-x}=33 \tag{4}
\end{equation*}
$$

7. The point A has coordinates $(4,6)$.

Given that $O A$, where O is the origin, is a diameter of circle C,
(i) find an equation for C.

Circle C crosses the x-axis at O and at the point B.
(ii) Find the coordinates of B.
(iii) Find an equation for the tangent to C at B, giving your answer in the form $a x+b y=c$, where a, b and c are integers.
8. (i) Express $3 x^{2}-12 x+11$ in the form $a(x+b)^{2}+c$.
(ii) Sketch the curve with equation $y=3 x^{2}-12 x+11$, showing the coordinates of the minimum point of the curve.

Given that the curve $y=3 x^{2}-12 x+11$ crosses the x-axis at the points A and B,
(iii) find the length $A B$ in the form $k \sqrt{3}$.
9. A curve has the equation $y=x^{3}-5 x^{2}+7 x$.
(i) Show that the curve only crosses the x-axis at one point.

The point P on the curve has coordinates $(3,3)$.
(ii) Find an equation for the normal to the curve at P, giving your answer in the form $a x+b y=c$, where a, b and c are integers.

The normal to the curve at P meets the coordinate axes at Q and R.
(iii) Show that triangle $O Q R$, where O is the origin, has area $28 \frac{1}{8}$.

